PlGF knockout delays brain vessel growth and maturation upon systemic hypoxic challenge.

نویسندگان

  • Moises Freitas-Andrade
  • Peter Carmeliet
  • Claudie Charlebois
  • Danica B Stanimirovic
  • Maria J Moreno
چکیده

In this study, we have investigated the potential role of placental growth factor (PlGF) in hypoxia-induced brain angiogenesis. To this end, PlGF wild-type (PlGF(+/+)) and PlGF knockout (PlGF(-/-)) mice were exposed to whole body hypoxia (10% oxygen) for 7, 14, and 21 days. PlGF(+/+) animals exhibited a significant ~40% increase in angiogenesis after 7 days of hypoxia compared with controls, while in PlGF(-/-) this effect only occurred after 14 days of hypoxia. No differences in pericyte/smooth muscle cell (SMC) coverage between the two genotypes were observed. After 14 days of hypoxia, PlGF(-/-) microvessels had a significant increase in fibrinogen accumulation and extravasation compared with those of PlGF(+/+), which correlated with endothelial cell disruption of the tight junction protein claudin-5. These vessels displayed large lumens, were surrounded by reactive astrocytes, lacked both pericyte/SMC coverage and endothelial vascular endothelial growth factor expression, and regressed after 21 days of hypoxia. Vascular endothelial growth factor expression levels were found to be significantly lower in the frontal cortex of PlGF(-/-) compared with those in PlGF(+/+) animals during the first 5 days of hypoxia, which in combination with the lack of PlGF may have contributed to the delayed angiogenic response and the prothrombotic phenotype observed in the PlGF(-/-)animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia activates placental growth factor expression in lymphatic endothelial cells

Placental growth factor (PlGF), a proangiogenic member of vascular endothelial growth family, is active during pathological conditions like cancer, metastasis formation and hind limb ischemia and in wound healing. Endothelial cells express PlGF and hypoxia positively modulates in vitro its expression. To verify whether hypoxia modulates PlGF expression in different cellular contexts and in vivo...

متن کامل

Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models.

The role of placenta growth factor (PlGF) in pathologic angiogenesis is controversial. The effects of PlGF on growth, angiogenesis, and metastasis from orthotopic tumors are not known. To this end, we stably transfected three human cancer cell lines (A549 lung, HCT116 colon, and U87-MG glioblastoma) with human plgf-2 full-length cDNA. Overexpression of PlGF did not affect tumor cell proliferati...

متن کامل

Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung

BACKGROUND Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of ind...

متن کامل

Deletion of Placental Growth Factor Prevents Diabetic Retinopathy and Is Associated With Akt Activation and HIF1a-VEGF Pathway Inhibition

A new diabetic mouse strain, the Akita.PlGF knockout (), was generated to study the role of placental growth factor (PlGF) in the pathogenesis of diabetic retinopathy (DR). PlGF deletion did not affect blood glucose but reduced the body weight of Akita.PlGF mice. Diabetes-induced retinal cell death, capillary degeneration, pericyte loss, and blood-retinal barrier breakdown were prevented in the...

متن کامل

Deletion of Placental Growth Factor Prevents Diabetic Retinopathy and Is Associated With Akt Activation and HIF1alpha-VEGF Pathway Inhibition

A new diabetic mouse strain, the Akita.PlGF knockout (), was generated to study the role of placental growth factor (PlGF) in the pathogenesis of diabetic retinopathy (DR). PlGF deletion did not affect blood glucose but reduced the body weight of Akita.PlGF mice. Diabetes-induced retinal cell death, capillary degeneration, pericyte loss, and blood-retinal barrier breakdown were prevented in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 32 4  شماره 

صفحات  -

تاریخ انتشار 2012